
Web Application Headers

Publication Date – September 22, 2022

Table of Contents
● Web Application Headers Risk Vector
● Web Application Header Findings
● Web Application Header Finding Considerations
● How to Evaluate a Host for Web Application Headers Inclusion
● How is the Web Application Headers Risk Vector Assessed?
● Web Application Header Finding Grades
● Web Application Header Findings and Remediation
● Proper Access-Control-Allow-Origin Implementation
● Proper Cache-Control Implementation
● What is Content-Security-Policy (CSP)?
● What Content-Security-Policy (CSP) Directives are Assessed?
● Proper Content-Security-Policy (CSP) Implementation
● Proper Expires Implementation
● Proper HTTP Strict-Transport-Security (HSTS) Implementation
● Proper Location Implementation
● Proper Set-Cookie Implementation
● Proper X-Content-Type-Options Implementation
● Proper X-Frame-Options (Frame-Options) Implementation
● Proper X-XSS-Protection Implementation
● Data Collection Methods Overview

Web Application Headers Risk Vector

The Web Application Headers risk vector, formerly known as “Application Security,” analyzes
security-related fields in the header section of communications between users and an application.
They contain information about the messages, determine how to receive messages, and how
recipients should respond to a message.

Much like a business letterhead, headers explain where the message is going and who it’s from, date
sent, what type of message it is, and other configuration options. They're included in all
back-and-forth communications between applications. Web servers and web-connected
applications must conform to a certain set of language (communication) standards when sending
information over the Internet. These language definitions are called “protocols.”

Web Application Headers cover security risks posed to an organization's application users through
Hypertext Transfer Protocols (HTTP) headers. HTTP defines the way a website should respond when
it can’t find something, if it can find something, or something was temporarily moved. For example,
the “404” page (page not found error) can be understood by your web browser thanks to the HTTP
standard. Otherwise, web programmers might pick obscure numbers or other ways to tell you that a
page is not found. Your browser will then have to guess.

Required headers are important for preventing communication attacks, between applications, from
succeeding. Using proper Web Application Headers over the Internet ensure communications are
robust against attacks that are designed to take advantage of ambiguity (communication details that
are not explicitly defined). Review how to evaluate your hosts for inclusion in Web Application
Headers.

● Rating Details
● Data Collection Methods
● Finding Details
● Finding Considerations

Risks
Correctly configured headers protects against malicious behavior, such as man-in-the-middle
(MITM) and cross-site scripting (XSS) attacks, and prevents attackers from eavesdropping and
capturing sensitive data, such as credentials, corporate email, and customer data.

Remediation
Refer to Web Application Header Finding Details.

● Findings that affect a company's Diligence grades have messages that provide an explanation
and remediation. Refer to the Help and Remediation messages for additional details.

● Implement the required headers from the required headers and refer to the configuration
requirements.

● Ensure application headers are created correctly and don't contain misspellings (typos).

Recommended Prioritization
HTTP/1.1, 1.0 and transport security (HTTPS or HTTP) are the common combinations of protocol.
Starting with implementing the following configurations across your web application headers is
recommended to improve “BAD” and “WARN” grades to “FAIR.”

● Content-Security-Policy (CSP): A properly configured CSP can help prevent XSS attacks by
restricting the origins of JavaScript, CSS, and other potentially dangerous resources. For
more information about this directive, refer to the W3� Content Security Policy Level 2 and
Mozilla: Using Content Security Policy documentation.

● X-Content-Type-Options: Setting X-Content-Type-Options to “nosniff” helps to prevent
MIME or content sniffing.

● Strict-Transport-Security: Required for any HTTPS configuration. Enforces the use of HTTP
over TLS/SSL. Properly using this header can help prevent MITM attacks. The
Strict-Transport-Security header is defined in RFC-6797.

References

● IANA.org, “Message Headers”
● W3C, “Content Security Policy Level 2”
● Mozilla, “Content Security Policy (CSP)”

https://www.w3.org/TR/CSP2/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://tools.ietf.org/html/rfc6797
https://www.iana.org/assignments/message-headers/message-headers.xml
https://www.w3.org/TR/CSP2/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

Web Application Header Findings
September 22, 2022: Added Assets (Asset, Calculated Importance, & View findings), Comments, Dates (First

Seen & Last Seen), Finding Identifier, Finding Grade, Refresh (Refresh Status, Refresh Details, & Refresh

Requested), In Remediations (Issue, Details, & Remediation Tip) fields; “Remediation Instructions” renamed to

“Remediations.”

The Web Application Headers risk vector contains information about the messages, determines how
to receive messages, and determines how recipients should respond to a message.

View findings from the Findings [Risks ➔ Findings] page or the BitSight API [GET
/v1/companies/entity_guid/findings?risk_vector=application_security].

This data is available for download (.csv) via the Download button. The download is supported
for up to 9000 rows of findings. It includes columns that are currently configured in the table.

Finding Details
The details include the data in Findings, Diligence details, and also the following information:

❖ This field can be included in the table from the Customize Columns option.

† Including this field contains the following details: Cache-Control, Content-Security-Policy,
Strict-Transport-Security, X-Content-Type-Options.

Field Description

Assets Asset details.

Asset The asset name.

Calculated Importance The BitSight-calculated asset importance.

View findings Filter findings by the asset.

Cache-Control ❖ † Indicates if the Cache-Control header is missing.

Comments Finding comments for describing the status of resolution or
validity of findings to external stakeholders and other interested
parties.

Content-Security-Policy ❖ † Indicates if the Content-Security-Policy header is missing.

Dates Observation dates.

First Seen The date when the finding was first observed.

Last Seen The date when the finding was last observed.

Destination Port ❖ The destination port number identified in the finding.

https://help.bitsighttech.com/hc/en-us/articles/360032505534-Findings
https://help.bitsighttech.com/hc/en-us/articles/1500006302922-Diligence-Findings

Final Location ❖ URL where headers were observed.

Finding Identifier An ID for the finding.

Finding Grade The finding grade.

HTTP Headers HTTP header details.

Last Seen IP:Port The most recently observed IP:Port pair.

Observed IPs ❖ The IP address where the certificate was seen, on the most recent
day.

Optional HTTP Header Fields Optional HTTP header records and issues.

Refresh Refresh details.

Refresh Status The status of a user-requested refresh of a finding.

Refresh Details Clarification on remaining issues, such as if the issue is still
present or further developments.

Refresh Requested The date when a refresh was requested.

Remediations ❖ Information for how to resolve a negative finding.

Issue The finding name.

Details A description of the finding.

Remediation Tip Tips for remediating the finding.

Required HTTP Header
Fields

Required HTTP header records and issues.

Strict-Transport-Security ❖
†

Indicates whether the Strict-Transport-Security header is
missing.

URL The URL of the web page.

X-Content-Type-Options ❖
†

Indicates if the X-Content-Type-Options header is missing.

Web Application Header Finding Considerations

To reduce the population of “noisy” Web Application Headers findings that are not valid risk
indicators, the following criteria is applied:

Item Criteria Why?

Hostname The host is part of
the company's
infrastructure.

Countless hosts, including subdomains
(mail.google.com), are tallied by BitSight. This is to
detect Web Application Headers across the vast
BitSight inventory.

The company's domains are used as the criteria for
identifying hosts. Related findings are matched and
assigned to a company.

Example: If the company has a subset domain (e.g.,
saperix.com) of the host specified in the finding
(www.saperix.com), the observation is recorded.

Port Must be 80 or 443. These ports are the most likely to host content that
are of interest. Non-standard ports (8000, 8080, 8443,
etc.) are often web management interfaces for
software and hardware platforms.

Hardware
Appliances

Must not be
common hardware
appliances, i.e.,
Cisco ASA,
Sonicwall firewalls,
etc.

These are the devices that general users cannot
address and fix.

Content-Type Must be
“text/html.”

If the Content-Type is “application/json,” this typically
means the host is a HTTP-based API.

Example: An image is not a useful web application.
The finding will be dropped.

Content-Length Must be absent or
greater than 0.

If present and is specified as “0” (no HTML returned),
the finding is not generated. If the header is missing
from the response, this check is skipped.

Response Must end in “200.” The data provider normally follows all 3xx-based
redirects, but if the 3xx redirect causes the protocol
to change (such as from HTTP to HTTPS or vice
versa), the finding ends and a new finding is created
for the new protocol.
If the response ends in anything else, such as:

● 3xx redirect - The headers received from the
web application are not necessarily the
headers that a normal user would observe.

● 4xx or 5xx HTTP status code - Something
went wrong during the request. The ultimate
resource was not returned.

Redirects Redirects to a
different hostname
(i.e., saperix.io) will
result in a finding
being created only
for saperix.io,
assuming saperix.io
is part of the
company’s
infrastructure.

● Findings are based on the original hostname.
When subdomains with different URLs are
shortcuts to the same web application, the
number of findings may be excessive. If a
finding is based on the terminal hostname, it
will have rapid fluctuations in finding grades.
This is because a different page is evaluated
each day.

● When a subdomain of a company redirects to
a domain (and infrastructure) that belongs to a
different company, the company that the
finding should be assigned to is ambiguous.

Protocol Changes Can only change
from HTTP to
HTTPS.

Redirects from HTTPS to HTTP is a misconfiguration
and should be addressed.

How to Evaluate a Host for Web Application
Headers Inclusion

Review the criteria for generating Web Application Header findings. To determine if a finding is
created, use the following procedure to run a curl -IL command on a host:

1. Use your browser’s developer tool to copy the cURL command to your clipboard. Refer to
the following instructions for your browser:

○ Chrome
○ Safari
○ Firefox
○ Internet Explorer
○ Microsoft Edge

2. Go to the “Network” tab of the developer tool.
3. Right-click “www.bitsighttech.com” and then click Copy ➔ Copy as cURL.
4. Paste this into your Terminal and include “-v” at the end of your query.
5. Run the cURL command.

Example Response
Refer to the following response, located before the encrypted data.

HTTP/1.1 301 Moved Permanently
Location: https://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Tue, 28 Aug 2018 17:17:40 GMT
Expires: Thu, 27 Sep 2018 17:17:40 GMT
Cache-Control: public, max-age=2592000
Server: gws
Content-Length: 220
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alt-Svc: quic=":443"; ma=2592000; v="44,43,39,35"

HTTP/1.1 200 OK
Date: Tue, 28 Aug 2018 17:17:40 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Set-Cookie: 1P_JAR=2018-08-28-17; expires=Thu, 27-Sep-2018 17:17:40 GMT;
path=/; domain=.google.com
Set-Cookie:
NID=137=CQFYBttoqB9c2BYrozSME9mnGMSygLp6PKHEj2mj5vXWAEfWgdb5AsiPDumeyvo6sX5OBT
ULQOdT9drlusQQu-6KhGfqrGHgRfSbUpkRwCjxXkltT8Varb4m_rM9Nyba; expires=Wed,
27-Feb-2019 17:17:40 GMT; path=/; domain=.google.com; HttpOnly
Transfer-Encoding: chunked

https://developers.google.com/web/tools/chrome-devtools/
https://support.apple.com/guide/safari/use-the-developer-tools-in-the-develop-menu-sfri20948/mac
https://developer.mozilla.org/en-US/docs/Tools
https://msdn.microsoft.com/en-us/library/dd565628(v=vs.85).aspx
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide

Alt-Svc: quic=":443"; ma=2592000; v="44,43,39,35"
Accept-Ranges: none
Vary: Accept-Encoding

Additional Help

If a finding is missing:
● Verify the host against the criteria for generating Web Application Header findings.
● Ensure your block lists are not preventing lawful, periodic internet scanners from visiting

your web properties.
● Check your firewall settings and ensure friendly scanners are able to connect.

If a header is missing:
● Ensure the domain is in your company’s infrastructure.
● If the port has been closed, but 60 days hasn’t elapsed for the finding to fall off your rating,

select the refresh button to update the port.

If findings are not updating from your changes:
● Please allow 2-3 days for Web Application Header findings to update.
● If the changes do not meet the criteria, no findings were created.

Please contact BitSight Support for additional help.

mailto:support@bitsight.com

How is the Web Application Headers Risk Vector
Assessed?

A variety of HTTP headers are assessed to determine if security best practices are being followed.
Only the HTTP headers of hosts that return HTTP 200 responses are assessed. Learn why HTTPS is
preferred over HTTP:

● National Cyber Security Centre: Serve websites over HTTPS (always)
● Troy Hunt: Here's Why Your Static Website Needs HTTPS

Overview
● Findings (Finding Grades and Messages)

○ Remediation Instructions
○ Finding Grading
○ Content Checks

● Assessed Headers
○ Required Headers
○ Optional Headers

● Configuration Requirements
○ Required HTTP 1.1 (HTTPS)
○ Required HTTP 1.1 (non-HTTPS)
○ Required HTTP 1.0 (HTTPS)
○ Required HTTP 1.0 (non-HTTPS)

● Responses
○ HTTP 1.1 (HTTPS)
○ HTTP 1.0 (HTTPS)

Field Description Details & Values

Finding Behavior How findings behave, depending
on the action taken.

● New findings immediately impact the grade.
● Remediated findings:

○ The newest finding replaces the past
finding and impacts the grade for 60
days, as it completes its lifetime.

○ The previous finding is replaced and
stops impacting the grade.

Lifetime The number of days a finding
will impact the risk vector grade,
assuming nothing changes in the
future and the finding is not
updated with new information.

60 Days

No Findings The letter grade if there are no
findings for this risk vector. – “C” Letter Grade

https://www.ncsc.gov.uk/blog-post/serve-websites-over-https-always
https://www.troyhunt.com/heres-why-your-static-website-needs-https/

This is set in the center of the grading scale for
computing into security ratings.

Some findings cannot be traced back to specific
companies due to the use of third party systems; such as
web filters and Content Delivery Networks (CDN), that are
capable of redirecting and encapsulating network traffic.
Some firewalls might also be detecting and blocking
external scanning tools from getting any data.

Refresh The BitSight platform regularly checks for new observations. BitSight findings are updated as
these observations change, e.g., newly observed Diligence findings or an existing finding was
remediated.

Automated Scan
Duration

The duration of a regularly
scheduled finding refresh, as the
BitSight platform checks for new
observations.

60 Days

User-Requested
Refresh Duration

The duration of a
user-requested refresh, which
initiates a refresh of eligible
findings upon request. This is
recommended when a change in
the finding is expected, such as
when a finding has been
remediated.

3 Business Days

Weight Out of 40% in Diligence. 3%

Findings

Remediation Instructions
Web Application Header findings that affect a company's Diligence grades have messages that
provide a brief description and remediation instructions (if any). They are specific to a field or value
in an application header.

Finding Grading
Since Web Application Header findings are based on the entire header configuration and not on
individual errors, finding grades can't be pre-assigned without evaluating the entire finding. See how
Web Application Header findings are graded.

Content Checks
● Websites with mixed HTTP and HTTPS content.
● Intra-site URLs are evaluated for HTTPS protocol use.
● Redirects from HTTPS to HTTP.
● Check if the “WWW-Authenticate” is contained in an HTTP 401 response from non-HTTPS

events.

Assessed Headers
● Access-Control-Allow-Origin
● Cache-Control
● Content-Security-Policy
● Expires
● HTTP Strict-Transport-Security

● Set-Cookie
● X-Content-Type-Options
● X-Frame-Options (Frame-Options)
● X-XSS-Protection

Required Headers
These are important for preventing attacks and are checked for usage and correct configurations. If
an application header exists and the required header is not found in the findings, the company is
penalized on missing headers. The penalties are described below under “Configuration
Requirements.”

Header Required For

Cache-Control
● Overview
● Implementation

HTTP/1.1

Content-Security-Policy
● Overview
● Implementation

● HTTP/1.1
● HTTP/1.0

Expires
● Overview
● Implementation

HTTP/1.0

HTTP Strict-Transport-Security (HSTS)
● Overview
● Implementation

● HTTP/1.1
● HTTP/1.0

X-Content-Type-Options
● Overview
● Implementation

● HTTP/1.1
● HTTP/1.0

X-Frame-Options
● Overview
● Implementation

HTTP/1.0

Optional Headers
Optional headers may be present, in addition to required headers.

● If present, optional headers are verified that they are configured correctly and go towards
the requirements as a whole for a GOOD or FAIR finding grade.

● If not present, companies are not penalized since they are unnecessary for preventing
malicious actions.

Header Optional For

Access-Control-Allow-Origin
● Overview
● Implementation

● HTTP/1.0
● HTTP/1.1

Location
● Overview
● Implementation

● HTTP/1.0
● HTTP/1.1

https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc6797
https://blogs.msdn.microsoft.com/ie/2008/09/02/ie8-security-part-vi-beta-2-update/
https://tools.ietf.org/html/rfc7034
https://www.w3.org/TR/access-control/#access-control-allow-origin-response-header
https://tools.ietf.org/html/rfc2616#section-14.30

Set-Cookie
● Overview
● Implementation

● HTTP/1.0
● HTTP/1.1

WWW-Authenticate
● Overview
● Implementation

● HTTP/1.0
● HTTP/1.1

X-XSS-Protection
● Overview
● Implementation

● HTTP/1.0
● HTTP/1.1

Configuration Requirements
Requirements for GOOD grade: No misconfigured headers (required or optional) are present.

Requirements for FAIR grade: No more than 50% distinct misconfigured headers can be present
(required and optional)

For HTTP connections, no headers are graded unless Set-Cookie is defined. The finding
grade will default to NEUTRAL.

Required HTTP 1.1 (HTTPS):
● Content-Security-Policy
● HTTP Strict-Transport-Security
● X-Content-Type-Options
● Cache-Control

Required HTTP 1.1 (non-HTTPS):
● Content-Security-Policy
● X-Content-Type-Options
● Cache-Control
● Set-Cookie

Required HTTP 1.0 (HTTPS):
● Content-Security-Policy
● HTTP Strict-Transport-Security
● X-Content-Type-Options
● Expires
● X-Frame-Options

Required HTTP 1.0 (non-HTTPS):
● Content-Security-Policy
● X-Content-Type-Options
● Expires
● X-Frame-Options
● Set-Cookie

Responses
The following errors downgrade the response from HTTPS to HTTP:

● 200 responses

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc7235#section-4.1
https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-iv-the-xss-filter/

● 30X responses
● 401 responses

HTTP 1.1 (HTTPS)

Response Description

200 We validate that no hyperlinks in the HTML for the web page downgrade the user inside the site and the
domain of the site.

We also validate and ensure the HTML of the webpage does not import resources (such as scripts and
images) from outside the site using HTTP instead of HTTPS.

The finding is graded BAD if these resources are present.

30x (301, 302,
307)

Any HTTPS finding that immediately downgrades the user to an HTTP connection using a redirect is
graded as BAD.

HTTP 1.0 (HTTPS)

Response Description

200 We validate that no hyperlinks in the HTML for the web page downgrade the user inside the site and the
domain of the site.

We also validate and ensure the HTML of the webpage does not import resources (such as scripts and
images) from outside the site using HTTP instead of HTTPS.

The finding is graded BAD if these resources are present.

30x (302,
307)

Any HTTPS finding that immediately downgrades the user to an HTTP connection using a redirect is
graded as BAD.

Web Application Header Finding Grades

Web Application Header findings are graded as GOOD, FAIR, WARN, BAD, or NEUTRAL.

● Methodology Overview
● Finding Weights
● Finding Grades

○ GOOD
○ BAD
○ NEUTRAL

Methodology Overview

Scenario Methodology

Content-Security-Policy
is missing.

For just the headers, any missing Content-Security-Policy is
penalized.

There's an HTTPS to
HTTP redirect. It is
changed to be an HTTPS
to HTTPS redirect.

HTTPS to HTTPS redirects are graded as NEUTRAL. Since NEUTRAL
Web Application Header findings do not impact the risk vector grade,
they do not replace the HTTPS to HTTP redirect BAD finding grade.

There’s an HTTP request
in a redirect chain.

Once there has been any HTTP request in a redirect chain, the
security of the chain is potentially compromised. For example, an
attacker can intercept the HTTP request (man-in-the-middle) and
then redirect the destination. Even having the final URL requested via
HTTPS doesn’t protect against this.[1] [2] [3]

A required header is not
present.

The company is penalized on missing required headers, as described
in the configuration requirements.

Optional headers are
present.

Optional headers are verified that they are configured correctly and
go towards the requirements as a whole for a GOOD or FAIR finding
grade, as described in the configuration requirements.

Optional headers are not
present.

Since optional headers are unnecessary for preventing malicious
actions (as described in the configuration requirements), there’s no
penalty.

Set-Cookie header is not
set.

HTTP findings are not graded unless the Set-Cookie header is set.

The presence of any
HTTP links within an
HTTPS page if
upgrade-insecure-reque
sts is present.

Any check for the presence of mixed content is skipped; there’s no
penalty on the presence of any HTTP links within an HTTPS page if
upgrade-insecure-requests is present.

https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/03-Testing_for_Sensitive_Information_Sent_via_Unencrypted_Channels.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/04-Authentication_Testing/01-Testing_for_Credentials_Transported_over_an_Encrypted_Channel.html
https://resources.enablesecurity.com/resources/Surf%20Jacking.pdf
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/upgrade-insecure-requests

An HTTP
Strict-Transport-Securit
y (HSTS) header on an
HTTP response.

An HTTP Strict-Transport-Security (HSTS) header on an HTTP
response is ignored.

Redirects to a deep link
of a hostname.

Redirects to a deep link of a hostname are graded on the contents of
that particular page.
Example:
The following redirect is considered to be targeting the same
hostname and to a deep link of that same hostname:
example.com redirects to example.com/app/settings

Wildcard DNS The presence of wildcards in DNS records can have an unnecessary
magnification of the number of Web Application Header findings.
These repeated findings are handled as a single finding.

Finding Weights
See the relative weights of Web Application Header findings:

Type Weight

HTTPS to HTTP Redirect Heavy

WWW-Authenticate (Error #401) Medium

Mixed HTTP & HTTPS Content Medium

HTTP Header Light

Finding Grades

GOOD
Findings are graded as GOOD if HTTPS connections are present and Set-Cookie is secure.

BAD
● The presence of any HTTP links or references embedded in an HTTPS website. See content

checks.
● Any request for credentials that uses the WWW-Authenticate header.
● We validate that no hyperlinks in the HTML for the web page downgrade the user inside the

site and the domain of the site and ensure the HTML of the webpage does not import
resources (such as scripts and images) from outside the site using HTTP instead of HTTPS.
The finding is graded BAD if these resources are present.

● Any HTTPS finding that immediately downgrades the user to an HTTP connection using a
redirect.

NEUTRAL
NEUTRAL Web Application Header findings do not negatively impact the risk vector grade.

● No headers are graded unless Set-Cookie is defined and the finding grade will default to
NEUTRAL.

● For HTTP connections, no headers are graded unless Set-Cookie is defined. The finding
grade will default to NEUTRAL.

● Redirects to the root of a different hostname are graded as NEUTRAL.
Redirects to a deep link of a hostname are graded on the contents of that particular page.

● Remediated findings result in a NEUTRAL grade, which squashes the previous BAD finding.

Resources:

1. Owasp, “Testing for Sensitive Information Sent via Unencrypted Channels”
2. Owasp, “Testing for Credentials Transported over an Encrypted Channel”

3. EnableSecurity, “Surf Jacking - HTTPS will not save you”

https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/03-Testing_for_Sensitive_Information_Sent_via_Unencrypted_Channels.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/04-Authentication_Testing/01-Testing_for_Credentials_Transported_over_an_Encrypted_Channel.html
https://resources.enablesecurity.com/resources/Surf%20Jacking.pdf

Web Application Header Findings and
Remediation

Web Application Header findings that affect a company's Diligence grades have messages that
provide a brief description and remediation instructions (if any). They are specific to a field or value
in an application header. It’s displayed in the details view.

If the response is empty, ensure the header is not empty and values are set.

● Evaluated
● Not Evaluated
● Messages

Evaluated
Links are evaluated to determine if any link results in a downgrade of the recipient, from an HTTPS
connection to an HTTP connection.

Message Description Remediation Instructions

HTTPS to HTTP link
(intra-domain)

HTTPS webpage with internal HTTP
link to same domain.

Avoid using HTTP links on
HTTPS webpages.

HTTPS to HTTP link
(intra-site)

HTTPS webpage with internal HTTP
link to same site.

Avoid using HTTP links on
HTTPS webpages.

Sites with a confirmed immediate redirect (using a redirect code 301, 302, 307) are graded as
“NEUTRAL.”

Resources are evaluated to check if any external dependency is used through HTTP (non-HTTPS)
that might leave the application users at risk.

Message Description Remediation Instructions

HTTP external
resource on HTTPS.

HTTPS webpage with an
external HTTP resource.

Avoid using HTTP external resources
on HTTPS webpages.

Not Evaluated
Findings with HTTP are not graded unless the Set-cookie header is set.

Messages

Message Description Remediation Instructions

Header is missing This required header was
not found.

Ensure your policy correctly implements the
required headers. Refer to the required
headers.

Ineffective headers: The implementation of
these header(s) do not
follow security best
practices.

Ensure your headers are implemented
correctly, as outlined in RFC-7231. Your
headers should not permit caching of
encrypted content. They should also have
specific permissions (as opposed to using
wildcards or other generalizations) and be
formatted properly.

Invalid character This response contains
invalid characters.

Responses may only include any ASCII
character, except control characters, and
allowed separator characters, as specified in
RFC-2616 (section 4.2).

Invalid URL The URL specified by this
directive is not valid.

Ensure the URL is correctly formatted and is
a valid and existing URL.

Missing directive A required directive
cannot be found.

Ensure your policy correctly implements the
required headers. Refer to the required
headers.

Missing required
headers

One or more required
security headers are not
set.

Ensure your policy correctly implements the
required headers. Refer to the required
headers.

Missing URL There is no URL specified
by this directive.

Include a valid and existing URL. Ensure it is
correctly formatted.

Must be a valid
integer

This value must be a valid
integer between -2^31
and 2^31 -1.

Ensure the value is a valid integer and does
not contain any other characters, aside from
numbers.

No security headers
are set

None of the security
headers are set.

Set your security headers. Refer to the
Veracode: Guidelines for Setting Security
Headers and the required headers.

No value set A value is expected for this
directive, but none are set.

Ensure that you have set a value for this
directive.

Optional headers
ineffective:
[HTML_REMOVED]

The following number of
headers are formatted in a
way that makes them
ineffective.

Format your headers correctly, as outlined
in RFC-7230 (section 3.2).

https://tools.ietf.org/html/rfc7231
https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2
https://www.veracode.com/blog/2014/03/guidelines-for-setting-security-headers
https://www.veracode.com/blog/2014/03/guidelines-for-setting-security-headers
https://tools.ietf.org/html/rfc7230#section-3.2

Redirect The page redirected to a
different hostname or IP
using a 301, 302, or 307
status code.

Required headers
ineffective:
[HTML_REMOVED]

The following number of
headers are formatted in a
way that makes them
ineffective.

Format your headers correctly, as outlined
in RFC-7230 (section 3.2).

Required headers not
set:
[HTML_REMOVED]

The following number of
required headers are not
set.

Ensure your policy correctly implements the
required headers. Refer to the required
headers.

Value not allowed No value is allowed for
this directive.

Do not include a value along with this
directive; it is directive-only.

https://tools.ietf.org/html/rfc7230#section-3.2

Proper Access-Control-Allow-Origin
Implementation

Optional for both HTTP/1.0 and HTTP/1.1

This field specifies which domains can share resources. Setting this field to an asterisk (*) allows any
domain to use these resources. For more information about this directive, see the W3 Access
Control for Cross-Site Requests.

Message Description Remediation Instructions

“null” must be
lowercase

A “null” setting must be
lowercase.

Use only lowercase letters for the “null” value.

Can only be
used for first
setting

A “*” or “null” can only be
used for the first setting.

Ensure the first values in the setting are either
“*” or “null” (lowercase only).

Duplicate
entries

There are duplicate entries. Remove duplicate entries and ensure the
remaining values are formatted correctly.

Incompatible
setting

This setting is incompatible
with earlier settings in this
header.

Ensure your settings do not conflict with each
other, as specified in W3C Access Control for
CSR.

https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/

Proper Cache-Control Implementation

Required for HTTP/1.1

This field sets conditions for storing data in the browser cache. The cache-control header is defined
in RFC-7234. For cache-response verification, a no-cache directive is sufficient for a good response.

See the Google: Best Practice Guide for more information about this header.

Message Description Remediation Instructions

Cannot be
negative

This directive must be set
to a value greater than or
equal to zero.

When specifying max-age or any other number in
your Cache-Control header, it must be an integer
greater than or equal to 0.

Directive used
multiple times

This directive can only be
used once.

Remove duplicate directives from your policy.

Insecure
configuration

This cache-control
configuration is insecure.

To satisfy this requirement, there are two choices.
The first choice is to use the directive "max-age=N"
with Cache-Control where N is an integer greater
than or equal to zero. The second choice is to set
the Expires header. For example, you can set
Expires to “0,” or if desired, set to a negative value
to disable caching. See RFC-7234 (sections 5.2 and
5.3) for more info.

Must be a
quoted string

This value must be a string
contained within double
quotes.

Ensure the attribute begins and ends with double
quotation marks (") and (") and does not contain
smart typographer's quotes (“) and (”).

Must be an
integer

The max-age value must
be an integer.

Max-age must be an integer between -2 ^ 31 and 2
^ 31 - 1 and cannot contain any other characters
aside from numbers.

Public and
private
directives

Public and private
directives cannot be set
simultaneously.

Choose either the “public” or “private” value in your
directive, but not both.

Satisfied by
Expires
header

Cache-Control is
effectively implemented
by the presence of the
Expires header.

Value is
missing

The cache-control value is
missing.

Implement Cache-Control correctly, according to
RFC-7234.

https://tools.ietf.org/html/rfc7234
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching#cache-control
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234

Value not
allowed

This cache-control value
is not allowed for this
directive.

Use correct values. See RFC-7234 for a
comprehensive overview of cache-control.

https://tools.ietf.org/html/rfc7234

What is Content-Security-Policy (CSP)?

Content-Security-Policy (CSP) directives are in-depth controls that can be used to protect against
code injection. It requires a website to be designed or refactored with CSP in mind.

When used, their presence indicates a company has a good cyber security posture. A properly
configured Content-Security-Policy (CSP) can help prevent cross-site scripting (XSS) attacks by
restricting the origins of JavaScript, CSS, and other potentially dangerous resources.

The absence of CSP directives does not automatically make a website or service exploitable.

Required for:
● HTTP/1.1
● HTTP/1.0

Resources
● Assessed Directives
● Goals
● Implementation

Goals of Content-Security-Policy (CSP)

The deployment of Content-Security-Policy (CSP) helps organizations with the following goals, as
defined in the Mozilla: Content-Security-Policy Level 3 (section 1.2):

● Mitigate the risk of content-injection attacks by giving developers fairly granular control
over.

○ Resources can be requested (and subsequently embedded or executed) on behalf of a
specific Document or Worker.

○ The execution of inline scripts.
○ Dynamic code execution (via eval() and similar constructs).
○ The application of inline style.

● Mitigate the risk of attacks that require a resource to be embedded in a malicious context
(the “Pixel Perfect” attack described in [TIMING], for example) by giving developers granular
control over the origins that can embed a given resource.

● Provide a policy framework that allows developers to reduce the privilege of their
applications.

● Provide a reporting mechanism that allows developers to detect flaws being exploited in the
wild.

Goals
The grading of the deployment of CSP should try to assess the fulfillment of each of the following
goals:

● Prevent Content Injection Attacks
● Prevent Resource Embedding Attacks
● Prevent the Reduction of Application Privileges
● Detect Attack Attempts via CSP Reporting

Prevent Content Injection Attacks
Effective implementation requires an application to be designed or refactored in a way that
eliminates inline Javascript or adds specific controls to its execution via the hash or nonce values.

The following checks can be made:

● Presence of unsafe-inline or unsafe-eval in script-src and unsafe-inline in
style-src. Policies using these values reflects a website that is not optimized to take
advantage of CSP and does not protect the user from code-injection attacks.

● Absence of host specific script-src, style-src and object-src? directives. A CSP that
does not specify at least one authorized host for its script and style directives does not
protect against code injection attacks.

Prevent Resource Embedding Attacks
Websites should specify the origins that are allowed to embed resources in the website's document
to prevent attacks that take advantage of embedding malicious resources.

The following checks can be made:

● Using the frame-ancestors directive to prevent the website resources from being loaded
inside an iframe prevents resource embedding attacks such as the pixel perfect attack or
clickjacking.

https://www.w3.org/TR/CSP/#goals
https://dom.spec.whatwg.org/#document
https://html.spec.whatwg.org/multipage/workers.html#worker
https://tc39.github.io/ecma262#sec-eval-x
https://www.w3.org/TR/CSP/#biblio-timing

● For X-Frame-Options, verify the header is not set. They achieve the same objective.
● If upgrade-insecure-requests is present, there’s no penalty on the presence of any

HTTP links within an HTTPS page. Any check for the presence of mixed content is skipped.

Prevent the Reduction of Application Privileges
Reduction of application privileges follows the security principle of least privilege and directs that
any application should not be given access to processes or files in excess of what the application
needs, at minimum, to complete its tasks.

The following checks can be made:

● Assess the level of restriction of all the fetch directives: All the fetch directives either
through the default-src or specifically defining each one of them should contain at least
one host specific value, or none, and no wildcards.

● Limit the use of objects and plugins that can be used by the application (plugin-types).
● Limit the actions of the current document (form-action).

Detect Attack Attempts via CSP Reporting
One of the features of CSP is its ability to report violations of the policy to the website owner. These
reports may represent simple errors in the application or in the policy but they may also represent
real attack attempts against the application, such as XSS vulnerabilities being exploited or malicious
software modifying user’s browsers to target the application. This feature should be used and the
reports monitored for events that may require action (e.g., correcting an XSS vulnerability). The
following checks should be made:

● Reporting policy violations: Ensure the report-to header being used when reporting
policy violations.

● Check if the policy is report only: If the policy is report only, it is not being enforced
and consequently not protecting the application and its users directly. However, this
demonstrates that violations are being monitored for response or for debugging of a future
implementation of an enforcement policy. This effort is relevant and should be considered.

● X-Frame-Options: Prevents resource embedding attacks. Use only when X-Frame-Options
is present and correctly set.

● No reporting: Use only when there is no place to log violations.
● Content-Security-Policy record is report only: For report-only records. If there is no

regular CSP header, there should already be an annotation indicating that the required
header is missing.

References

● Mozilla: Content-Security-Policy Level 3 (Section 1.2)
● WHATWG “DOM Living Standard” (Section 4.5)
● WHATWG “HTML Living Standard” (Section 10.2.6.3)
● ECMAScript “ECMA-262” (Section 18.2.1)
● WC3 “Content Security Policy Level 3” (Informative References Section)
● Mozilla “CSP: upgrade-insecure-requests”

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/upgrade-insecure-requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/plugin-types
https://www.w3.org/TR/CSP/#goals
https://dom.spec.whatwg.org/#document
https://html.spec.whatwg.org/multipage/workers.html#worker
https://tc39.github.io/ecma262#sec-eval-x
https://www.w3.org/TR/CSP/#biblio-timing
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/upgrade-insecure-requests

What Content-Security-Policy (CSP) Directives
are Assessed?

Content-Security-Policy (CSP) directives are in-depth controls, and the absence of those directives
does not automatically make a website or service exploitable. However, when used, their presence
indicates a company has a good cyber security posture.

● Objectives
● Directives
● Considerations
● Checks

Objectives
● Application privilege limitation - The CSP uses the form-action directive to limit

application privilege.
● Application privilege limitation - The CSP uses the plugin-types or object-src directives to

limit application privilege.
● Code Injection Prevention - This requires the website to be designed or refactored with

CSP in mind. The user specifies explicit hosts for source-list directives and does not use the
unsafe-inline or unsafe-eval keywords. This objective is not met if any of the source-list
directives are improperly set or incomplete.

● Reporting - The CSP specifies a reporting location through a reporting directive. If either
the report-to or report-uri directive is present, the reporting objective is considered to be
satisfied.

● Resource Embedding Prevention - The CSP uses frame-ancestors (or X-Frame-Options) to
prevent resource embedding attacks.

Directives

Directive Description

base-uri Defines a set of allowed URLs that can be used in the src attribute of an HTML base tag.

connect-src Applies to XMLHttpRequest (AJAX), WebSocket, fetch(), <a ping> or EventSource. If not
allowed, the browser emulates a 400 HTTP status code.

default-src Defines the default policy for fetching resources, such as JavaScript, Images, CSS, Fonts,
AJAX requests, Frames, and HTML5 Media. Not all directives fall back to default-src.

font-src Defines valid sources of font resources (loaded via @font-face).

form-action Restricts URLs that can be used as the target of form submissions. Satisfies the
form-action-objective.

frame-ancestors Prevents resource embedding attacks. Satisfies the resource-embedding-objective.

https://content-security-policy.com/connect-src/
https://content-security-policy.com/default-src/
https://content-security-policy.com/font-src/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/form-action
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors

frame-src Defines valid sources for loading frames. In CSP Level 2, this was deprecated in favor of the
child-src directive. In CSP Level 3, it has been un-deprecated. If not present, it will
continue to defer to child-src.

img-src Defines valid sources of images.

manifest-src Restricts the URLs that application manifests can be loaded.

media-src Defines valid sources of audio and video, e.g., HTML5 <audio> and <video> elements.

object-src Prevents fetching and executing plugin resources embedded using <object>, <embed>, or
<applet> tags. The most common example is Flash. This directive satisfies the
plugin-types-objective.

plugin-types
[deprecated]

Restricts the set of plugins that can be embedded into a document by limiting the types of
resources that can be loaded. Since this is deprecated, we recommend using object-src:
"none" to address this.

report-to Instructs the user agent to store reporting endpoints for an origin. Satisfies the
reporting-objective.

report-uri
[deprecated]

A pointer that locates where violations of CSP are logged. Satisfies the reporting-objective.

script-src Defines valid sources of JavaScript.

script-src-attr Specifies valid sources for JavaScript inline event handlers. This includes only inline script
event handlers like onclick, but not URLs loaded directly into <script> elements.

script-src-elem Specifies valid sources for JavaScript <script> elements, but not inline script event
handlers, like onclick.

style-src Defines valid sources of stylesheets or CSS.

style-src-attr Specifies valid sources for inline styles applied to individual DOM elements.

style-src-elem Specifies valid sources for stylesheets <style> and <link> elements with
rel="stylesheet".

worker-src Restricts the URLs that may be loaded as a Worker, SharedWorker, or ServiceWorker.

Considerations
● CSP in HTML is considered only if:

○ The HTML head element is an ancestor.
○ The policy is inside a meta element, like so:

http-equiv=="Content-Security-Policy"

https://content-security-policy.com/img-src/
https://csp.withgoogle.com/docs/strict-csp.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/plugin-types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/report-to
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/report-uri
https://content-security-policy.com/script-src/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src-attr
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src-elem
https://content-security-policy.com/style-src/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/style-src-attr
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/style-src-elem

This is case sensitive.

○ The element has a content attribute.
○ The directive is known.

● CSP defined in meta tags don't support the following directives:
○ report-uri
○ frame-ancestors
○ sandbox

Checks
● The syntax of CSP directives is checked for correctness of the data, duplicate directives, and

if optional/known directives are added.
● Multiple headers are allowed.
● Either the X-Frame-Options or frame-ancestors directive should be present and

correctly set.
● Reporting should be present and there should be a directive for logging errors.
● There should already be an annotation indicating that the required header is missing. This is

indicated if the CSP record is report only, which is a type of CSP record that has the specific
Content-Security-Policy-Report-Only header instead of Content-Security-Policy.

Proper Content-Security-Policy (CSP)
Implementation

Required for HTTP/1.1 and HTTP/1.0

A properly configured Content-Security-Policy (CSP) can help prevent cross-site scripting (XSS)
attacks by restricting the origins of JavaScript, CSS, and other potentially dangerous resources.

● See the W3� Content-Security-Policy Level 2 and Mozilla: Content-Security-Policy
documentation for more information about this directive.

● Goals of CSP.
● The overall Web Application Headers letter grade is computed from the weight of all

required directives and the optional directives that are not present. See the assessed CSP
directives.

● We check for the presence of mixed content within headers; If
upgrade-insecure-requests is present, there’s no penalty on the presence of any HTTP
links within an HTTPS page.

A good CSP should:

● Implement directives that set valid source restrictions from where the client can load frames
and scripts as well as limit where the client can submit form data.

● Restrict plugins and specify a valid resource for reporting policy violations.
● Not contain “unsafe” keywords or include wildcards that are ineffective for restricting

sources.

Example Policy
● Script source restrictions are inherited by the default-src value, which does not contain an

“unsafe” keyword or a broad wildcard source.
● Frame embedding is restricted.
● Plugins are blocked.
● A form-action directive is in place.
● A valid reporting endpoint is provided.

default-src 'self'; object-src 'none'; form-action 'none'; report-uri
/example-reporting-endpoint;

Either X-Frame-Options should be good or it should include frame-ancestors.

Good X-Frame-Options:

X-Frame-Options: sameorigin

https://www.w3.org/TR/CSP2
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/upgrade-insecure-requests

Includes frame-ancestors:

default-src 'self'; object-src 'none'; form-action 'none'; frame-ancestors
'self’; report-uri /example-reporting-endpoint;

Messages

Unsafe Keywords and Sources
The policy allows resources to be fetched from unsafe sources and can facilitate XSS by allowing
code to be included directly in the document.

Message Description Remediation Instructions

“Unsafe-eval” is
insecure

Unsafe-eval is vulnerable to XSS
attacks.

Remove the “unsafe-eval” keyword from your CSP.

“Unsafe-inline” is
insecure

Unsafe-inline is vulnerable to
XSS attacks.

Remove the “unsafe-inline” keyword from your CSP.

Insecure redirect This security policy allows a
redirect that is not secure.

Remove any use of unsafe-redirect in your CSP.

“Blob” source is
insecure

The “blob” source may allow the
loading of unsafe resources.

Remove “blob:” from the source list in your CSP.

“Data” source is
insecure

The “data” source may allow the
loading of unsafe resources.

Remove “data:” from the source list in your CSP.

“Filesystem” source
is insecure

The “filesystem” source may
allow the loading of unsafe
resources.

Remove “filesystem:” from the source list in your CSP.

Potentially insecure
policy

This CSP has issues that
possibly makes it insecure.

Remove any instances of “unsafe-” directives and “blob, data,
filesystem” sources. Ensure your CSP directives are correctly
configured. Learn more at W3C CSP.

Unspecified or Invalid Sources
The policy fails to specify directive sources or incorporates a wildcarded source.

Message Description Remediation Instructions

Asterisks in the
source are insecure

This source allows potentially unsafe
resources to be loaded from anywhere.

Remove any instances of the asterisk character (*) that
are by itself from your CSP.

Source is too broad This source is too broad to properly
prevent attacks.

Use specific sources, such as
https://www.example.com. Remove generalizations,
such as http:, https:, https://*.com.

Conflicting source
expressions

The “none” source expression, which
represents a lack of URLs, is listed
along with other URLs.

Choose either “none” or specify source URLs, but do
not use both in your CSP.

https://www.w3.org/TR/CSP/#source-list-syntax

Default-src inherited This directive was not explicitly
specified, so the default-src will be
used instead.

Set specific policies for your directives. Otherwise, the
default-src directive will be used instead.

Invalid host source The host source is invalid or
improperly formatted.

Ensure your host source is properly formatted in your
CSP. Learn more at W3C CSP.

Invalid source
expression

This source can not be included in a
CSP.

Use only valid source expressions in your CSP. Learn
more at W3C CSP.

Missing default-src The default-src directive is not set. Use the default-src directive in your CSP, as specified
in W3C CSP.

Missing source list There is no source list in this CSP. Add components to the source list for your CSP. Learn
more at W3C CSP.

Invalid Directives
The policy contains directives that are invalid or circumvent other directives. The policy is likely not
operating as intended.

Message Description Remediation Instructions

Directive is not
allowed

This is not a valid directive for
this HTTP header.

Ensure your directives use approved expressions and they do not
contain spelling errors.

Directive used
multiple times

This directive can only be used
once.

Remove duplicate directives from your policy.

Empty policy This security policy has no
sources, rendering it
ineffective.

Make sure that your source-list is not empty and refers to
complete URLs or IP addresses, as described in Policy Delivery:
Content-Security-Policy Header Field (section 3.1).

Header overwritten Another header has
overwritten this CSP,
rendering it invalid.

Check your CSP headers and ensure that your headers do not
conflict with each other.

Header set more
than once

This header cannot be set
more than once.

Remove duplicate headers and duplicate header definitions from
your HTTP headers.

https://www.w3.org/TR/CSP/#source-list-syntax
https://www.w3.org/TR/CSP/#source-list-syntax
https://www.w3.org/TR/CSP/#source-list-syntax
https://www.w3.org/TR/CSP/#source-list-syntax
https://www.w3.org/TR/CSP2/#content-security-policy-header-field
https://www.w3.org/TR/CSP2/#content-security-policy-header-field

Proper Expires Implementation

Required for HTTP/1.0

The Expires header is specified in RFC-7234 (section 5.3). The date format for the Expires header is
defined in RFC-7231 (section 7.1.1.1). The date format strictly specifies GMT as the time zone.

Expired headers must either have a value that's an integer less than or equal to zero or contain a
valid date in the format specified by RFC-7231. A date more than one year in the future will incur a
slight penalty.

Message Description Remediation Instructions

Expires date is
invalid

The Expires date is invalid
or improperly formatted.

Ensure the field contains a valid date in the format
specified by RFC-7231. For example, “Sun, 06 Nov
1994 08�49�37 GMT.”

Expires date is
too far in the
future

The Expires date should
not be more than a year
in the future.

Change the date to be no more than one year ahead
of the current day.

https://tools.ietf.org/html/rfc7234#section-5.3
https://tools.ietf.org/html/rfc7231#section-7.1.1.1
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231#section-7.1.1.1

Proper HTTP Strict-Transport-Security (HSTS)
Implementation

Required for both HTTP/1.1 and HTTP/1.0

HTTP Strict-Transport-Security (HSTS) enforces the use of HTTP over TLS/SSL. Properly using this
header can help prevent man-in-the-middle attacks (MITM). This header is defined in RFC-6797.

Requirements
● The max-age parameter is required.
● The includeSubDomains and preload parameters are optional. If present, we check to see

if they are legitimate and that there are no associated values (i.e., syntax parsing).
● An HSTS header on an HTTP response is ignored.

Messages

Message Description Remediation Instructions

Directive used
multiple times

This directive can
only be used once.

Remove duplicate directives from your policy.

“includeSubDomain
s” is misspelled

The
“includeSubDomain
s” phrase is
misspelled.

Ensure the capitalization for “includeSubDomains”
is exact.

Invalid max-age This field is not an
integer, is too long,
or contains a syntax
error.

The Max-age must be an integer between -2 ^ 31
and 2 ^ 31 - 1 and cannot contain any other
characters aside from numbers.

Max-age is not set Max-age is a
required directive
used to help
prevent
man-in-the-middle
(MITM) attacks.

Use the max-age directive in your HTTP
Strict-Transport-Security header, as specified in
RFC-6797 (section 6.1.1). Ensure it contains only a
positive number. To avoid the “max-age is too
small” warning, set the max-age to at least 86400.

Max-age is too
small

The Max-age should
be set to at least
86400.

Change the max-age directive in your HTTP
Strict-Transport-Security header to be greater than
or equal to 86400.

“Preload” is
misspelled

The word “preload”
is misspelled.

Ensure “preload” is spelled correctly.

https://www.globalsign.com/en/blog/what-is-hsts-and-how-do-i-use-it/
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797#section-6.1.1

Proper Location Implementation

Optional for both HTTP/1.0 and HTTP/1.1

The Location header is used to redirect the visitor.

Message Description Remediation Instructions

HTTPS redirect to
HTTP.

HTTPS URI is redirecting to
HTTP URI.

Avoid downgrading user connections from
secure to insecure.

Reference

RFC-2616 (Section 14.30)

https://tools.ietf.org/html/rfc2616#section-14.30
https://tools.ietf.org/html/rfc2616#section-14.30

Proper Set-Cookie Implementation

Optional for HTTPS and HTTP

Set-Cookie provides information for setting cookies. The Set-Cookie header is defined in
RFC-6265.

● For HTTPS connections (if present) to be graded GOOD, Set-Cookie should be secure.
● For HTTP connections:

○ No headers are graded unless Set-Cookie is defined and the finding grade will
default to NEUTRAL.

○ The secure directive is not required when Set-Cookie is present.
● The HttpOnly and Secure attributes for the following cookies are not evaluated since they

are not user-configurable and do not contain sensitive information:
○ AWS ELB
○ Cloudflare __cfuid
○ AppDynamics ADRUM

If Set-Cookie is not properly implemented, you may get one the following finding details:

Message Description Remediation Instructions

Empty cookie
value

The cookie value is
empty.

The “cookie-value” field cannot be empty. Ensure it is
a valid cookie ID, enclosed in double quotes, and
contains only valid ASCII characters.

Invalid
character

There is an invalid
character in the cookie
value.

Make sure that in your Set-Cookie header, the
cookie-value attribute contains only US-ASCII
characters (excluding CTLs), whitespace, commas,
semicolons, and backslashes. See Set-Cookie syntax.

Invalid cookie
pair

The cookie name-value
pair is invalid.

Ensure the cookie-name, cookie-value, and
cookie-pair attributes are used correctly and have
correct values in your Set-Cookie header. See
Set-Cookie syntax for additional details.

Invalid
domain

This field does not
contain a valid domain.

Ensure the domain-value attribute in your Set-Cookie
header has a value that refers to an existing domain, is
spelled correctly, and if it is an IP address, that it is
complete.

Invalid expires
value

The Expires date is
invalid or is improperly
formatted.

Ensure the field contains a valid date in the format
specified by RFC-7231. For example, “Sun, 06 Nov 1994
08�49�37 GMT.”

Invalid
max-age

This field is not an
integer, is too long, or
contains a syntax error.

The Max-age must be an integer between -2 ^ 31 and
2 ^ 31 - 1 and cannot contain any other characters
aside from numbers.

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265#section-4.1.1
https://tools.ietf.org/html/rfc6265#section-4.1.1
https://tools.ietf.org/html/rfc7231#section-7.1.1.1

Invalid path The path setting does
not contain a valid path.

Ensure the path-av attribute has a value that refers to
an actual and existing forward path
(yourdomain.com/path).

No cookie pair No cookie pair found. Ensure the “cookie pair” attribute in your Set-Cookie
header exists and is used in the following manner:
cookie-pair = cookie-name "=" cookie-value. See
Set-Cookie syntax for additional details.

No
Set-Cookie

For HTTP connections,
no headers are graded
unless Set-Cookie is
defined.

Please review all header requirements.

No
Set-Cookie
found

For HTTP connections,
no headers are graded
unless Set-Cookie is
defined.

Please review all header requirements. Define your
set-cookie header to be graded as “GOOD” and enable
grading for all other headers.

Repeated ID Two or more cookies
are using the same ID.

Ensure the first “name = value;” pair in your
Set-Cookie header is not using a duplicated setting.

Secure is not
set

The secure directive is
not set.

Ensure the secure value in your Set-Cookie header is
being used in your directive.

https://tools.ietf.org/html/rfc6265#section-4.1.1

Proper WWW-Authenticate Implementation

Optional for both HTTP/1.0 and HTTP/1.1

The WWW-Authenticate header indicates the authentication scheme.

Responses

Response Description Header

401 If the header isn't used, there will be no record to assess.
We grade any request for credentials that uses the WWW-Authenticate
header as “BAD.”

● HTTP 1.0
(non-HTTPS)

● HTTP 1.1
(non-HTTPS)

Messages

Message Description Remediation

Authentication over HTTP. Requiring authentication over HTTP. Only use auth forms on HTTPS resources.

Reference

RFC-7235 (Section 4.1)

https://tools.ietf.org/html/rfc7235#section-4.1
https://tools.ietf.org/html/rfc7235#section-4.1

Proper X-Content-Type-Options Implementation

Required for both HTTP/1.1 and HTTP/1.0

Multipurpose Internet Mail Extensions (MIME) sniffing (also known as “content sniffing”) can occur
when a website allows users to upload data to the server. This is important if a user uploads an
HTML page when the web server expects a different content type. When the web server sends the
data back to a browser, the browser may interpret it as a web page even though the web server
intended it to be (say) a CSV.

See the Fetch Living Standard for details on the processing performed by browsers.

Recommendations:

● Concatenate all the X-Content-Type-Options headers together.
● Set the X-Content-Type-Options header to “nosniff.”

Message Description Remediation Instructions

Must be
“nosniff”

The first field should contain a
“nosniff” value.

Set the value for X-Content-Type-Options
to be “nosniff.”

https://fetch.spec.whatwg.org/#x-content-type-options-header

Proper X-Frame-Options (Frame-Options)
Implementation

Required for HTTP/1.0

Properly setting X-Frame-Options helps prevent clickjacking attacks by not allowing the browser to
render this page in a frame. The X-Frame-Options header is defined in RFC-7034. The only valid
options for this header are DENY and SAMEORIGIN. Though ALLOW-FROM is ignored by modern
browsers, it does not currently negatively impact the Web Application Headers grade.

Message Description Remediation Instructions

Too many
directives

Browsers only support one
X-Frame-Options header and
one value within that header.

Ensure the X-Frame-Options header contains either
only the DENY or the SAMEORIGIN option.

https://tools.ietf.org/html/rfc7034

Proper X-XSS-Protection Implementation

Optional for both HTTP/1.0 and HTTP/1.1

Setting X-XSS-Protection to “FIELD” helps to prevent common cross-site scripting attacks by
filtering and blocking suspected malicious scripts. For the first directive, “0” disables XSS protection
on the client side and “1” enables XSS protection. “mode = block” prevents the browser from loading
pages potentially compromised by XSS. The report directive can either be a path or a URL.

For more information about this directive, see:

● OWASP, “Cross Site Scripting Prevention Cheat Sheet”
● Veracode Guidelines for Setting Security Headers

Message Description Remediation

Incompatible
setting

This setting is incompatible
with earlier settings in this
header.

Ensure that your settings do not conflict with
each other, as specified in W3C Access Control
for CSR.

Must be “block” The mode must be set to
“block,” as it is the only
accepted value.

If X-XSS-Protection is enabled, the mode must
be set to “block” and cannot be set to anything
else.

Must be 0 or 1 The first directive must be
either “0 or “1,” as these are
the only values that enable
or disable the header.

The first directive in the X-XSS-Protection
header must be 0 or 1, cannot be any other
number or contain text.

Report must be
last

The Report directive must
come last, otherwise a
client might ignore this
value.

Ensure your X-XSS-Protection header directives
are ordered correctly and that “Report” is the
last directive. Read more at Guidelines for
Setting Security Headers.

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://www.veracode.com/blog/2014/03/guidelines-for-setting-security-headers
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://www.veracode.com/blog/2014/03/guidelines-for-setting-security-headers
https://www.veracode.com/blog/2014/03/guidelines-for-setting-security-headers

Data Collection Methods Overview

To ensure we provide the most relevant and comprehensive ratings on cyber security performance;
we are committed to continuously expanding the data quality, breadth and innovation used in
Security Ratings. We will continue to add breadth to our data sources and risk vectors to
continuously expand the visibility of a company’s performance.

We do this by owning proprietary data streams and working closely with partners around the globe
to ensure access to multiple and diverse data feeds. We do rigorous analysis on the quality, origin,
and confidence of all collected data. Because of the breadth, we can cross-correlate and improve
confidence based on multiple observation points and methods.

In addition, we can provide historical data going back 1 year, giving organizations a long-term view
of security performance across the enterprise.

Collection Methods
Our data sources are carefully curated for their detective breadth and technical reliability due to the
daily volume of processed data. Once the legitimacy of a source is qualified, our inclusion criteria is
straightforward and the event is included in your organization's rating.

Method Description

Sinkhole This is a technique that intercepts botnet traffic on its way to a command and
control server (C&C or C2 server). By intercepting the botnet traffic, the
sinkhole can get infection information and details on its origin.

Spam Trap A threat intelligence group planted email addresses, which no one should ever
use or know about, to trap Spammers. These spam traps are placed where
Spammers look for address lists. The collected address lists receive malicious
messages. These events are attributed to your company’s rating based on the
sender IP/domain information contained in the message.

Email Header
Analysis

Analysis has been done on a message or set of messages that hit a spam trap.
The header is determined to have shared properties with similar messages that
indicate malicious intent. Some spambots are detected and characterized via
email header analysis alone, which is not evidence of an outreach to a C&C
server, but they do fit specific patterns that allow us to identify them with
specific names (i.e. Lethic).

Mail Server
Connection
Analysis

Spam type: Impossible HELO
An Impossible HELO is a characteristic of a spambot detected during the
establishment of a session with an external mail server.
Upon the completion of a Transmission Control Protocol (TCP) handshake, a
legitimate email announces itself as coming from a valid domain. It will proceed
to send email from the valid domain. For Impossible HELOs, the handshake is
completed, but the email client announced itself as coming from an external
mail server domain that’s known to be “impossible.”

Example: These events are detected by a network of sensors that are
deployed across the Internet through thousands of Mail Transfer Agents
(MTA). These sensors are programmed with the known HELO strings of
major mail providers and messages that are sent from infected clients with
HELO strings that are known to be impossible. This is a simple check that is
virtually impossible to fail if mail servers are configured correctly.

